Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426398

RESUMO

Climbing represents a critical behavior in the context of primate evolution. However, anatomically modern human populations are considered ill-suited for climbing. This adaptation can be attributed to the evolution of striding bipedalism, redirecting anatomical traits away from efficient climbing. Although prior studies have speculated on the kinetic consequences of this anatomical reorganization, there is a lack of data on the force profiles of human climbers. This study utilized high-speed videography and force plate analysis to assess single limb forces during climbing from 44 human participants of varying climbing experience and compared these data with climbing data from eight species of non-human primates (anthropoids and strepsirrhines). Contrary to expectations, experience level had no significant effect on the magnitude of single limb forces in humans. Experienced climbers did, however, demonstrate a predictable relationship between center of mass position and peak normal forces, suggesting a better ability to modulate forces during climbing. Humans exhibited significantly higher peak propulsive forces in the hindlimb compared with the forelimb and greater hindlimb dominance overall compared with non-human primates. All species sampled demonstrated exclusively tensile forelimbs and predominantly compressive hindlimbs. Strepsirrhines exhibited a pull-push transition in normal forces, while anthropoid primates, including humans, did not. Climbing force profiles are remarkably stereotyped across humans, reflecting the universal mechanical demands of this form of locomotion. Extreme functional differentiation between forelimbs and hindlimbs in humans may help to explain the evolution of bipedalism in ancestrally climbing hominoids.


Assuntos
Locomoção , Primatas , Animais , Humanos , Fenômenos Biomecânicos , Membro Posterior , Extremidade Inferior
2.
Animals (Basel) ; 13(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37174475

RESUMO

Brachiation is a form of suspensory locomotion observed only in Primates. The non-human hominoids (e.g., gibbons, orangutans, chimpanzees, and gorillas) are considered specialized brachiators, yet peculiar among the living apes are anatomically modern humans (Homo sapiens), who have forgone this locomotor mode in favor of bipedal striding. Humans can, however, brachiate and seem to have retained the locomotor capabilities of their arboreal ancestors. However, the mechanics of human brachiation have not been quantified. In this study, we evaluate how closely human brachiation conforms to the expectations of simple pendular motion using triaxial accelerometry and high-speed videography. These data are compared to specialized brachiating non-human primates. We found that humans have lower energy recovery than siamangs (Symphalangus syndactylus) during brachiation and have shorter observed pendular periods than expected compared to other primates. We demonstrate that relatively long forelimb length and high grip forces, a proxy for global forelimb force-generating potential, act as the main driving factors to reduce energetic costs through effective pendular recovery. These data are the first to assess the strategies humans adopt to perform a behavior they are not anatomically specialized to execute and places them within a comparative framework amongst other brachiating primates. We show that although humans demonstrate behavioral flexibility during brachiation (e.g., differing mediolateral and vertical center of mass positional movement patterns), anatomical features are the primary driver of variation in brachiation performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...